Alan R. Katritzky,* Yong-Jiang Xu and Hai-Ying He
Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA

Received (in Cambridge, UK) 11th December 2001, Accepted 16th January 2002
First published as an Advance Article on the web 11th February 2002

4-Benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzothiazepines 5a,b, -1,4-benzoxazepine (12) and -1,4-benzodiazepine (20) are obtained via aluminium chloride mediated intramolecular cyclizations of N, N-bis($1 \mathrm{H}-1,2,3$-benzotriazol-1-ylmethyl)-2-(arylthio)ethan-1-amines 4a,b, -2-(phenoxy)ethan-1-amine (11) and - N-[2-(N^{\prime}-methylanilino)ethyl]amine (19), respectively. Subsequent nucleophilic substitutions of the benzotriazolyl group in 5a,b, $\mathbf{1 2}$ and $\mathbf{2 0}$ succeeded with Grignard reagents, triethyl phosphite, sodium borohydride, and a silyl enol ether to give novel 2,3,4,5-tetrahydro-1,4-benzothiazepines 6-9, -1,4-benzoxazepines $\mathbf{1 3}$ and 14, and -1,4-benzodiazepines 21-23 in good yields.

Introduction

1,4-Benzothiazepine derivatives are of considerable interest because of their biological activity as inhibitors of HIV-1 integrase, antitumor antibiotics, enzyme inhibitors, muscle relaxants and anticonvulsants, sedatives and hypnotics. ${ }^{1}$ 1,4Benzoxazepines are also of pharmacological interest due to their activity on the central nervous system, as enzyme inhibitors, or as analgesics and antitussives. ${ }^{1 c, 2}$, 1,4-Benzodiazepines are important building blocks in various biologically active compounds, which show hypolipidermic, central nervous system, anti-cancer, and anxiolytic activity. ${ }^{3}$ They are also effective against Meniere's disease. ${ }^{4}$ One recent paper has shown imidazole-containing tetrahydrobenzodiazepines to be effective as inhibitors of farnesyltransferase. ${ }^{5}$

Many synthetic procedures exist for the preparation of 2 -oxo-, 3 -oxo-, 5 -oxo- and 3,5 -dioxo-1,4-benzothiazepines ${ }^{6}$ and for dihydro-1,4-benzothiazepines. ${ }^{7}$ However, relatively few publications relate to the preparation of 2,3,4,5-tetrahydro-1,4benzothiazepines containing no carbonyl groups, and most of these involve reduction of a carbonyl group containing precursor such as (i) 5 -oxo-1,4-benzothiazepine, ${ }^{1 c, 8 a}$ (ii) 3-oxo-1,4-benzothiazepine; ${ }^{6 b}$ and (iii) 2,3-dihydro-7,8-dimethoxy-1,4benzothiazepines ${ }^{1 d, 7 d}$ (Scheme 1). We know of only one article describing a direct ring synthesis of a tetrahydro-1,4-benzothiazepine in 18% yield by condensing $2-\mathrm{BrMgSC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$ NHMgBr with $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ (Scheme 1, iv). ${ }^{8 b}$

Similarly, most syntheses of 2,3,4,5-tetrahydro-1,4-benzoxazepines involve reduction of the carbonyl group(s) as in (i) 5-oxo-2,3,4,5-tetrahydro-1,4-benzoxazepine; ${ }^{\text {1c }}$ (ii) 3 -oxo-2,3,4,5-tetrahydro-1,4-benzoxazepines; ${ }^{9 a, b}$ and (iii) 3,5-dioxo-2,3,4,5-tetrahydro-1,4-benzoxazepine, ${ }^{9 c, d}$ or a double bond as in (iv) 2,3-dihydro-1,4-benzothiazepine. ${ }^{2 a}$ (Scheme 2).

Syntheses of 1,4 -benzodiazepines have been much studied. ${ }^{10}$ Most previous preparations of N-substituted-2,3,4,5-tetra-hydro-1,4-benzodiazepines involved N-substitution of a preexisting 2,3,4,5-tetrahydro-1,4-benzodiazepine. For example, 4-acyl-2,3,4,5-tetrahydro-1,4-benzodiazepines were readily prepared by the selective acylation of 2,3,4,5-tetrahydro-1,4benzodiazepines with esters, acid chlorides, carboxylic acids or sulfonyl chlorides. Reactions of 4-acyl-2,3,4,5-tetrahydro-1,4 benzodiazepines with 5 -formylimidazole and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ gave 1 -alkyl-4-acyl-2,3,4,5-tetrahydro-1,4-benzodiazepines. 1-Acyl-4-alkyl-2,3,4,5-tetrahydro-1,4-benzodiazepines were

Scheme 1

Scheme 2
also produced via selective Boc protection at the 4-position, followed by acylation, deprotection and alkylation. ${ }^{5}$ 1-Benzyl-4-methyl-2,3,4,5-tetrahydro-1,4-benzodiazepine was previously

Scheme 3 i) $\mathrm{R}^{1} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}{ }^{1} \mathrm{COCl}, \mathrm{R}^{1} \mathrm{CO}_{2} \mathrm{H}$ or $\mathrm{R}^{1} \mathrm{SO}_{2} \mathrm{Cl}(\mathrm{X}=\mathrm{CO}$ or SO_{2}); ii) 5-formylimidazole, $\mathrm{NaBH}(\mathrm{OAc})_{3}$; iii) $(t-\mathrm{BuOCO})_{2} \mathrm{O}$; iv) 1-naphthoyl chloride; v) TFA; vi) same as ii).
obtained by the reduction of the corresponding benzoylderivative with $\mathrm{LiAlH}_{4}{ }^{11}$ (see Scheme 3).

We now report a direct, high-yielding, convenient approach to 2,3,4,5-tetrahydro-1,4-benzothiazepines, -1,4-benzoxazepines and -1,4-benzodiazepines not involving reduction of a corresponding carbonyl or unsaturated derivative. 2,3,4,5-Tetrahydro-1,4-benzothiazepines 6-9, -1,4-benzoxazepines 13 and $\mathbf{1 4}$ and -1,4-benzodiazepines 21-23 were obtained in good yields via the nucleophilic substitutions of 4-benzotriazolyl-methyl-2,3,4,5-tetrahydro-1,4-benzothiazepines 5a,b, -1,4-benzoxazepine 12 and -1,4-benzodiazepine $\mathbf{2 0}$. Intermediates 5a,b, 12 and $\mathbf{2 0}$ are produced from the intramolecular cyclizations of N, N-bis(1 H -1,2,3-benzotriazol-1-ylmethyl)-2-(arylthio)ethan1 -amines 4a,b, -2-(phenoxy)ethan-1-amine 11 and $-N-\left[2-\left(N^{\prime}-\right.\right.$ methylanilino)ethyl]amine 19, respectively.

Results and discussion

The Mannich condensation of 2-(arylsulfanyl)ethylamine $\mathbf{1 a}, \mathbf{b},{ }^{12}$ benzotriazole (2) and formaldehyde (3) gave N, N-bis(1 H -1,2,3-benzotriazol-1-ylmethyl)-2-(arylthio)ethan-1-amines 4a,b in 85% and 81% yields, respectively. When a mixture of methanol-water was used as the solvent, compounds 4a,b were separated out, essentially pure (determined by NMR and microanalysis) after washing, and were used directly for the subsequent reactions.

When compounds $\mathbf{4 a}, \mathbf{b}$ were treated with 3 equiv. of AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, one of the benzotriazole moieties was removed to form the cyclization products 4-benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzothiazepines $\mathbf{5 a}, \mathbf{b}$ in 86% and 91% yields, respectively (Scheme 1). Although starting materials 4a,b were Bt^{1} (benzotriazol-1-yl) isomers only, compounds $\mathbf{5 a}, \mathbf{b}$ were each obtained as a mixture of Bt^{1} and Bt^{2} (benzotriazol-2-yl) isomers in which the Bt^{1} isomer predominated. This indicated that there was an equilibrium between the cyclization products $\mathbf{5 a}, \mathbf{b}$ and \mathbf{X} (Scheme 4). We report the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the major Bt^{1} isomers and the ratio of $\mathrm{Bt}{ }^{1}$ and Bt^{2} isomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (see Experimental section). According to our previous work, ${ }^{13} \mathrm{Bt}^{1}$ and Bt^{2} are both good leaving groups, and removal of benzotriazolyl groups from Bt^{1} and Bt^{2} isomers in the presence of a Lewis acid results in the same iminium cation \mathbf{X}. Therefore, compounds 5a,b were each used as mixtures of two isomers for the subsequent reactions. Compounds $\mathbf{4 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}$ were characterized by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and microanalysis. The aliphatic region of the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}, \mathbf{b}$ showed one singlet ascribed to two $\mathrm{BtCH}_{2} \mathrm{~N}($ at 5.65 ppm$)$. In the spectra of $\mathbf{5 a}, \mathbf{b}$, two singlets were observed (at $c a .5 .40 \mathrm{ppm}$ and 4.20 ppm) which were ascribed to
$\mathrm{BtCH}_{2} \mathrm{~N}$ and $\mathrm{ArCH}_{2} \mathrm{~N}$ fragments, respectively. The correct numbers of quaternary carbons for $\mathbf{5 a}, \mathbf{b}$, determined by Attached Proton Test (APT) spectra, further support their structures.

The benzotriazole moieties in 4-benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzothiazepines $\mathbf{5 a}, \mathbf{b}$ were easily substituted by nucleophiles because of the equilibrium between \mathbf{X} and $\mathbf{5 a}, \mathbf{b}$. Indeed, Grignard reagents replaced the Bt moiety smoothly at room temperature. Treatment of $\mathbf{5 a} \mathbf{a} \mathbf{b}$ with various Grignard reagents in THF gave 2,3,4,5-tetrahydro-1,4-benzothiazepines 6a-f in $84-97 \%$ yields. With the help of 2 equiv. of ZnBr_{2} to coordinate the benzotriazole anion in \mathbf{X}, the iminium cations were trapped by $\mathrm{P}(\mathrm{OEt})_{3}$ to give the derivatives $7 \mathbf{a}$ and $7 \mathbf{b}$ in 78% and 77% yield, respectively. Using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ instead of ZnBr_{2} as the Lewis acid, an analogous reaction of $\mathbf{5 a}$ with 1-phenyl-1-(trimethylsilyloxy)ethylene resulted in 3-[2,3,4,5-tetrahydro-1,4-benzothiazepin-4-yl]-1-phenylpropan-1-one $\mathbf{8}$ in 48\% yield.

We also successfully reduced the Bt moiety with NaBH_{4}. Treatment of $\mathbf{5 a}$ with sodium borohydride in dry THF furnished the 4-methyl-2,3,4,5-tetrahydro-1,4-benzothiazepineborane complex (9) (Scheme 4). The NMR of 9 showed restricted rotation as compared to other compounds such as 6 and 8. All peaks in the aliphatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum were low and broad. All of them became sharper when the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded at $60^{\circ} \mathrm{C}$ rather than at $25^{\circ} \mathrm{C}$. The singlet (at 2.45 ppm) ascribed to the NCH_{3} group became sharp and distinct. The signal of $\mathrm{NCH}_{2} \mathrm{Ar}$, which was a broad singlet at $25^{\circ} \mathrm{C}$, appeared as a distinct doublet (at 4.56 ppm). In the aliphatic region of the ${ }^{13} \mathrm{C}$ NMR spectrum, the peaks which were low and broad at $25^{\circ} \mathrm{C}$, were well shaped at $60^{\circ} \mathrm{C}$ except for the peak at 46.3 ppm .

We successfully extended this methodology to synthesize 2,3,4,5-tetrahydro-1,4-benzoxazepines. $\quad N, N$-Bis $(1 H-1,2,3-$ benzotriazol-1-ylmethyl)-2-(phenoxy)ethan-1-amine 11 and 4-benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzoxazepine
12 were obtained in 78% and 86% yields, respectively, from 2-phenoxyethylamine 10 using a procedure similar to that discussed for the syntheses of $\mathbf{4}$ and 5 (Scheme 5). Pure 11 was also obtained after a similar work-up procedure. Compound 12 was a mixture of Bt^{1} and Bt^{2} isomers in which the Bt^{1} isomer predominated. We provide the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the Bt^{1} isomer and the ratio of the two isomers. The cyclized product 12 is well supported by NMR spectra and microanalysis.

When 4-benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzoxazepine (12) was used as the starting material, 2,3,4,5-tetrahydro-1,4-benzoxazepine derivatives 13a,b and diethyl 2,3,4,5-tetrahydro-1,4-benzoxazepin-4-ylmethylphosphonate
(14) were obtained via procedures similar to those described for the syntheses of compounds 6 and 7, respectively.

This methodology also works very well in the preparation of 2,3,4,5-tetrahydro-1,4-benzodiazepine. N-Methyl- N-phenyl-1,2-ethanediamine $\mathbf{1 8}$ was prepared in 90% yield from N-methylaniline 15 as reported via reaction of N-methylbenzenaminium chloride (16) with oxazolidin-2-one (17). ${ }^{14}$

Reaction of diamine $\mathbf{1 8}$ with 2 equiv. of benzotriazole and 2 equiv. of formaldehyde produced N, N-bis($1 H$-1,2,3-benzo-triazol-1-ylmethyl)- N-[2-(N^{\prime}-methylanilino)ethyl]amine 19 in 92% yield as a sole Bt^{1} isomer. Treatment of 19 with 3 equiv. of AlCl_{3} removed only one benzotriazolyl moiety to form 4-benzotriazolylmethyl-1-methyl-2,3,4,5-tetrahydro-1 H -1,4benzodiazepine 20 via the intramolecular Friedel-Crafts reaction similar to its oxygen and sulfur analogs. Compound 20 was obtained as a mixture of Bt^{1} and Bt^{2} isomers in a $4.4: 1$ ratio and was used directly for the subsequent reactions.

Nucleophilic substitutions of $\mathbf{2 0}$ with 1.5 equiv. of a Grignard reagent $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{MgBr}, \mathrm{CH}_{2}=\mathrm{CHMgBr}\right.$, or $\left.\mathrm{PhCH}_{2} \mathrm{MgCl}\right)$ in THF gave 1-methyl-4-substituted-2,3,4,5-tetrahydro-1 H -1,4benzodiazepines 21a-c in $68-76 \%$ yields. Compounds 21a-c were fully characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and

1
1a, $R^{1}=H$
1b, $R^{1}=\mathrm{CH}_{3}$

$\xrightarrow{\text { iii }}$

7b, $\mathrm{R}^{1}=\mathrm{CH}_{3}$

Scheme 4 i) Benzotriazole (BtH), HCHO ; ii) AlCl_{3}; iii) Grignard reagents; iv) $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{ZnBr}_{2}$; v) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \Longrightarrow_{\mathrm{Ph}}^{\mathrm{OSiMe}_{3}}$; vi) NaBH_{4}.

Scheme 5 i) BtH , HCHO ; ii) AlCl_{3}; iii) RMgBr ; iv) $\mathrm{P}\left(\mathrm{OEt}_{3}, \mathrm{ZnBr}_{2}\right.$.
microanalysis or HRMS results. Treatment of $\mathbf{2 0}$ with 1.2 equiv. of triethyl phosphite in the presence of ZnBr_{2} furnished diethyl (1-methyl-2,3,4,5-tetrahydro-1 H-1,4-benzodiazepin-4ylmethyl)phosphonate (22) in 69% yield (Scheme 6).

Reaction of $\mathbf{2 0}$ with 2 equiv. of NaBH_{4} at room temperature replaced the benzotriazolyl group with hydrogen to afford 1,4-dimethyl-2,3,4,5-tetrahydro-1 H -1,4-benzodiazepine (23) in 73\% yield. The methylene protons, the 5-position, in 23 appear at 4.31 and 3.79 ppm in ${ }^{1}$ NMR spectra as an AB system with 13.6 Hz coupling constants.

Conclusion

In summary, we have developed efficient and convenient methods for the syntheses of diverse 4 -substituted 2,3,4,5-tetrahydro-1,4-benzothiazepines, -1,4-benzoxazepines and $-1,4$-benzodiazepines. Intramolecular cyclizations of N, N-bis($1 H$-1,2,3-benzotriazol-1-ylmethyl)-2-(arylthio)ethan-1-amines, -2-(phenoxy)ethan-1-amine and $-N$-[2-(N^{\prime}-methylanilino)-

Scheme 6 i) $\mathrm{HCl}-\mathrm{EtOAc}(1 \mathrm{M})$; ii) oxazolidin-2-one (17), neat; iii) 1 M NaOH ; iv) BtH , HCHO ; v) Grignard reagents; vi) $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{ZnBr}_{2}$; vii) NaBH_{4}.
ethyl]amine are followed by nucleophilic substitutions of the remaining benzotriazolyl groups in the cyclized products with Grignard reagents, triethyl phosphite, sodium borohydride, and a silyl enol ether.
The methodology discussed in this paper allows the substituents at the 4-position of 1,4-benzothiazepines, 1,4-benzoxazepines and 1,4-benzodiazepines to be varied easily. The nature and orientation of substitutents at the other positions are derived from the starting materials.

Experimental

THF was distilled from sodium-benzophenone prior to use. All mps were determined using a Bristoline hot-stage microscope
and are uncorrected. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$ NMR spectra were recorded on a 300 NMR spectrometer in CDCl_{3} (with TMS for ${ }^{1} \mathrm{H}$ and CDCl_{3} for ${ }^{13} \mathrm{C}$ as the internal reference); J values are given in Hz . All of the reactions were carried out under N_{2}. Column chromatography was performed on silica gel (230-400 mesh).

N, N-Bis(1 $\mathrm{H}-1,2,3$-benzotriazol-1-ylmethyl)-2-(phenylthio)ethan-1-amine 4a

2-(Phenylsulfanyl)ethylamine ($\mathbf{1}, 1.53 \mathrm{~g}, 10 \mathrm{mmol}$) and benzotriazole ($\mathbf{2}, 2.39 \mathrm{~g}, 20 \mathrm{mmol}$) were dissolved in methanol-water ($40: 10 \mathrm{~mL}$). Formaldehyde ($\mathbf{3}, 1.62 \mathrm{~g}, 20 \mathrm{mmol}, 37 \%$ aqueous solution) was then slowly added to the solution. The reaction mixture was stirred for 12 h at room temperature. The precipitate was filtered off, washed with cold $\mathrm{Et}_{2} \mathrm{O}$, and dried to give the product as a white powder ($3.74 \mathrm{~g}, 90 \%$); mp $89-90{ }^{\circ} \mathrm{C}$ (colorless plates from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 63.56; $\mathrm{H}, 5.08$; $\mathrm{N}, 23.79 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{~S}$ requires C, 63.59; $\mathrm{H}, 5.09$; $\mathrm{N}, 23.60 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 8.09(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.64(2 \mathrm{H}, \mathrm{d}$, $J 8.5), 7.52$ ($2 \mathrm{H}, \mathrm{t}, J 8.0$), 7.41 ($2 \mathrm{H}, \mathrm{t}, J 8.0$), $7.27-7.21(5 \mathrm{H}, \mathrm{m})$, $5.64\left(4 \mathrm{H}, \mathrm{s}, 2 \mathrm{BtCH}_{2} \mathrm{~N}\right), 3.19(2 \mathrm{H}, \mathrm{t}, J 6.7), 3.08(2 \mathrm{H}, \mathrm{t}, J 6.7)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 146.0,134.9,133.0,129.4,129.1,128.0$, 126.4, 124.3, 120.0, 109.8, 64.4, 50.1, 32.1.

N, N-Bis(1 H -1,2,3-benzotriazol-1-ylmethyl)-2-[(2-methyl-phenyl)thiolethan-1-amine 4b

Following the same procedure as $\mathbf{4 a}$ using 2-[(2-methylphenyl)thio]ethylamine as starting material, the title compound (3.78 g , 88%) was obtained as colorless plates; $\mathrm{mp} 124-125{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 64.32; H, 5.65; N, 23.16. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{~S}$ requires C, $64.31 ; \mathrm{H}, 5.40 ; \mathrm{N}, 22.83 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.09(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.66(2 \mathrm{H}, \mathrm{d}, J 8.2), 7.51(2 \mathrm{H}, \mathrm{t}, J 7.3)$, $7.41(2 \mathrm{H}, \mathrm{t}, J 7.6), 7.14-7.07(4 \mathrm{H}, \mathrm{m}), 5.65\left(4 \mathrm{H}, \mathrm{s}, 2 \mathrm{BtCH}_{2} \mathrm{~N}\right)$, $3.21(2 \mathrm{H}, \mathrm{t}, J 6.7), 3.06(2 \mathrm{H}, \mathrm{t}, J 7.0), 2.26(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 146.1, 137.8, 134.3, 133.1, 130.3, 128.2, 128.0, 126.5, 126.1, 124.2, 120.0, 109.8, 64.4, 50.1, 31.3, 20.3.

4-Benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzothiazepine 5a

A mixture of $4 \mathrm{a}(3.35 \mathrm{~g}, 8 \mathrm{mmol})$ and $\mathrm{AlCl}_{3}(3.2 \mathrm{~g}, 24 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 12 h . Then 2 M NaOH solution $(40 \mathrm{~mL})$ was added to quench the reaction. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with 1 M NaOH , brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo gave the crude product, which was purified by column chromatography (eluent: EtOAc : hexanes $=1: 4-1: 2$) to give a mixture of Bt^{1} and Bt^{2} isomers in a $5.2: 1$ ratio ($1.92 \mathrm{~g}, 81 \%$); $\mathrm{mp} 117-118{ }^{\circ} \mathrm{C}$ (from EtOAc-hexanes) (Found: C, 64.72; H, 5.50; N , 19.07. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires C , $64.84 ; \mathrm{H}, 5.44 ; \mathrm{N}$, $18.90 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 8.08(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.64$ $(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.56(1 \mathrm{H}, \mathrm{d}, J 6.7), 7.50(1 \mathrm{H}, \mathrm{t}, J 7.0), 7.40(1 \mathrm{H}, \mathrm{d}$, $J 7.9), 7.26-7.15(3 \mathrm{H}, \mathrm{m}), 5.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{BtCH} \mathrm{H}_{2} \mathrm{~N}\right), 4.20(2 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}_{2} \mathrm{~N}$), $3.42-3.39(2 \mathrm{H}, \mathrm{m}), 2.86-2.84(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 146.2, 142.2, 136.7, 132.9, 132.7, 132.5, 130.7, 127.8, $127.4,124.0,120.0,110.2,66.9,57.9,56.5,32.1$.

4-Benzotriazolylmethyl-9-methyl-2,3,4,5-tetrahydro-1,4-benzothiazepine 5b

Following the same procedure as for $\mathbf{5 a}$ using $\mathbf{4 b}$ as the starting material, compound $\mathbf{5 b}(2.03 \mathrm{~g}, 82 \%)$ was obtained as a mixture of Bt^{1} and Bt^{2} isomers in a $6.1: 1$ ratio; $\mathrm{mp} 86-87^{\circ} \mathrm{C}$ (colorless prisms from EtOAc-hexanes) (Found: C, 65.70; H, 5.99. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}$ requires C, $\left.65.78 ; \mathrm{H}, 5.84 \%\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.09(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.65(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.50(1 \mathrm{H}, \mathrm{t}, J 7.0)$, $7.39(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.13(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{BtCH}_{2} \mathrm{~N}\right), 4.23$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 3.36-3.34(2 \mathrm{H}, \mathrm{m}), 2.84-2.81(2 \mathrm{H}, \mathrm{m}), 2.47$ $(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 146.2,142.5,140.2,136.7,133.0$,
129.5, 128.5, 127.4, 127.1, 124.0, 119.1, 110.3, 67.3, 58.4, 55.9, 32.1, 21.9 .

4-(4-Methoxybenzyl)-2,3,4,5-tetrahydro-1,4-benzothiazepine 6a

To a solution of $5 \mathrm{a}(0.30 \mathrm{~g}, 1 \mathrm{mmol})$ in anhydrous THF (15 mL) at $0{ }^{\circ} \mathrm{C}$, 4 -methoxyphenylmagnesium bromide ($3 \mathrm{ml}, 1.5 \mathrm{mmol}$, 0.5 M in THF) was added dropwise. The solution was stirred for 2 h at $0^{\circ} \mathrm{C}$, and for 10 h at room temperature. Then the solvent was evaporated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed with $20 \% \mathrm{NH}_{4} \mathrm{Cl}, 2 \mathrm{M} \mathrm{NaOH}$ and brine. The organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by column chromatography (eluent: EtOAc : hexanes: $\mathrm{Et}_{3} \mathrm{~N}=1: 7: 0.05$) and recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give the product as colorless prisms ($0.25 \mathrm{~g}, 88 \%$); mp $85-86^{\circ} \mathrm{C}$ (Found: C, 71.59 ; H, 6.98 ; N, 4.89. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 71.54 ; \mathrm{H}, 6.71 ; \mathrm{N}, 4.91 \%$); δ_{H} (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.55(1 \mathrm{H}, \mathrm{t}, J 4.7), 7.22-7.15(4 \mathrm{H}, \mathrm{m})$, $7.02(1 \mathrm{H}, \mathrm{t}, J 5.0), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.2), 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right)$, $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.49\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3} \mathrm{OPhCH}_{2} \mathrm{~N}\right), 3.33-3.30$ $(2 \mathrm{H}, \mathrm{m}), 2.81-2.78(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.6,143.2$, 137.1, 132.2, 130.9, 130.7, 129.9, 127.2(2), 113.6, 59.2, 57.7, 56.0, 55.2, 30.3 .

4-(3-Phenylprop-2-yn-1-yl)-2,3,4,5-tetrahydro-1,4-benzothiazepine 6b

Following the same procedure as $\mathbf{6 a}$ using (phenylethynyl)magnesium bromide ($1.5 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) as Grignard reagent, compound $6 \mathrm{~b}(0.25 \mathrm{~g}, 90 \%)$ was obtained as a yellow oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.54(1 \mathrm{H}, \mathrm{dd}, J 7.3,1.5), 7.46-$ $7.43(2 \mathrm{H}, \mathrm{m}), 7.35-7.30(4 \mathrm{H}, \mathrm{m}), 7.25-7.17(2 \mathrm{H}, \mathrm{m}), 4.24(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2} \mathrm{~N}\right), 3.44-3.41(2 \mathrm{H}, \mathrm{m}), 2.87-2.83$ $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.4,137.0,132.3$, 131.6(2), $130.8,128.2(2), 128.1,127.5,127.4,122.9,85.2,84.9,59.5,57.9$, 44.5, 31.2. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NS}(\mathrm{M}+1): 280.1160$. Found: 280.1148.

4-(4-Chlorobenzyl)-2,3,4,5-tetrahydro-1,4-benzothiazepine 6c

Following the same procedure as $\mathbf{6 a}$ using 4-chlorophenylmagnesium bromide ($1.5 \mathrm{ml}, 1.0 \mathrm{M}$ in ether) as Grignard reagent, compound $\mathbf{6 c}(0.27 \mathrm{~g}, 93 \%)$ was purified by recrystallization; $\mathrm{mp} 83-84{ }^{\circ} \mathrm{C}$ (colorless prisms from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 66.28; $\mathrm{H}, 5.64 ; \mathrm{N}, 4.61 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNS}$ requires $\mathrm{C}, 66.31 ; \mathrm{H}, 5.56 ; \mathrm{N}$, $4.83 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.57-7.54(1 \mathrm{H}, \mathrm{m}), 7.30-$ $7.21(4 \mathrm{H}, \mathrm{m}), 7.17-7.14(2 \mathrm{H}, \mathrm{m}), 6.97-6.94(1 \mathrm{H}, \mathrm{m}), 4.09(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2} \mathrm{~N}\right), 3.50\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{ClPhCH}_{2} \mathrm{~N}\right), 3.33-3.30(2 \mathrm{H}, \mathrm{m}), 2.79-$ $2.76(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.9,137.3,137.1,132.6$, $132.3,130.8,130.0,128.4,127.3,127.2,59.0,58.0,55.8,30.3$.

4-Pentyl-2,3,4,5-tetrahydro-1,4-benzothiazepine 6d

Following the same procedure as 6a using butylmagnesium bromide $(0.75 \mathrm{ml}, 2.0 \mathrm{M}$ in ether) as Grignard reagent, compound $6 \mathbf{d}(0.21 \mathrm{~g}, 89 \%)$ was obtained as a yellowish oil (Found: C, $71.34 ; \mathrm{H}, 8.71 ; \mathrm{N}, 6.32 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NS}$ requires $\mathrm{C}, 71.44 ; \mathrm{H}, 8.99$; $\mathrm{N}, 5.95 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.53(1 \mathrm{H}, \mathrm{d}, J 7.0)$, 7.23-7.11 (3H, m), $4.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.33-3.30(2 \mathrm{H}, \mathrm{m})$, 2.76-2.73 ($2 \mathrm{H}, \mathrm{m}$), $2.35(2 \mathrm{H}, \mathrm{t}, J 7.4), 1.54-1.45(2 \mathrm{H}, \mathrm{m}), 1.34-$ $1.22(4 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{t}, J 6.7) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.1$, $136.9,132.2,130.6,127.2,127.1,59.4,58.1,52.2,30.0,29.5$, 27.0, 22.5, 14.0.

4-(4-Methoxybenzyl)-9-methyl-2,3,4,5-tetrahydro-1,4-benzothiazepine 6 e

Following a similar procedure as for $\mathbf{6 a}$ using $\mathbf{5 b}$ instead of $\mathbf{5 a}$, compound $\mathbf{6 e}(0.26 \mathrm{~g}, 87 \%)$ was purified by recrystallization; $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}$ (colorless prisms from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $71.99 ; \mathrm{H}$, 7.41; N, 4.66. $\mathrm{C}_{18} \mathrm{H}_{21}$ NOS requires C, 72.20; H, 7.07; N, 4.68\%); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.21(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.10-7.02(2 \mathrm{H}$,
m), 6.87-6.83 (3H, m), $4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.81(3 \mathrm{H}, \mathrm{s}), 3.51$ $\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3} \mathrm{OPhCH}_{2} \mathrm{~N}\right), 3.27-3.24(2 \mathrm{H}, \mathrm{m}), 2.79-2.76$ (2 H, $\mathrm{m}), 2.47(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.5,143.2,139.4,137.1$, $130.8,129.8,128.8,128.7,126.4,113.5,59.5,57.1,56.4,55.1$, 30.4, 21.9 .

9-Methyl-4-pentyl-2,3,4,5-tetrahydro-1,4-benzothiazepine $\mathbf{6 f}$

Following a similar procedure as for 6e using butylmagnesium bromide ($0.75 \mathrm{ml}, 2.0 \mathrm{M}$ in ether) as Grignard reagent, compound $6 \mathbf{6}(0.22 \mathrm{~g}, 88 \%)$ was obtained as a yellowish oil (Found: C, $72.44 ; \mathrm{H}, 9.67 ; \mathrm{N}, 5.86 . \mathrm{C}_{15} \mathrm{H}_{23}$ NS requires C, 72.23; H, 9.29; $\mathrm{N}, 5.62 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.26(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.12$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}$), 3.29-3.26 ($2 \mathrm{H}, \mathrm{m}$), 2.75-2.73 ($2 \mathrm{H}, \mathrm{m}$), 2.46 $(3 \mathrm{H}, \mathrm{s}), 2.37(2 \mathrm{H}, \mathrm{t}, J 7.4), 1.56-1.46(2 \mathrm{H}, \mathrm{m}), 1.36-1.22(4 \mathrm{H}$, m), $0.89(3 \mathrm{H}, \mathrm{t}, J 7.1) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 143.3, 139.6, 137.0, $128.9,128.6,126.6,59.8,57.7,52.9,30.3,29.6,27.2,22.6,22.0$, 14.1.

Diethyl 2,3,4,5-tetrahydro-1,4-benzothiazepin-4-ylmethylphosphonate 7a

To a solution of $\mathbf{5 a}(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{ZnBr}_{2}(0.45 \mathrm{~g}, 2 \mathrm{mmol})$ was added. The solution was stirred for 20 min before triethyl phosphite $(0.2 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added dropwise. After stirring at room temperature for 10 h , the solvent was evaporated. The residue was dissolved in EtOAc, and the solution was washed with 2 M NaOH and water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by column chromatography (eluent: EtOAc : hexanes =1:3-2:1) to give $7 \mathrm{a}(0.25 \mathrm{~g}, 79 \%)$ as a yellowish oil (Found: C, $53.01 ; \mathrm{H}, 7.02$; N, 4.82. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{PS}$ requires $\mathrm{C}, 53.32 ; \mathrm{H}, 7.03 ; \mathrm{N}, 4.44 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.56(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.5), 7.32(1 \mathrm{H}$, dd, $J 7.0,1.5$), $7.24-7.15(2 \mathrm{H}, \mathrm{m}), 4.28$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}$), 4.15 $\left(4 \mathrm{H}, \mathrm{q}, J 7.4,2 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.50-3.47(2 \mathrm{H}, \mathrm{m}), 2.75-2.72(2 \mathrm{H}$, $\mathrm{m}), 2.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PCH}_{2} \mathrm{~N}\right), 1.33(6 \mathrm{H}, \mathrm{t}, J 7.0) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 142.3, 137.0, 132.5, 131.3, 127.4, 127.3, $62.0(\mathrm{~d}, J 6.9)$, 60.5 (d, $J 7.4$), 59.4 (d, $J 8.6$), 46.9 (d, $J 168.9$), 29.8, 16.4 (d, $J 5.7$).

Diethyl [9-methyl-2,3,4,5-dihydro-1,4-benzothiazepin-4ylmethyl]phosphonate 7b

Following a similar procedure as for $\mathbf{7 a}$ using $\mathbf{5 b}$ instead of $\mathbf{5 a}$ compound $7 \mathrm{bb}(0.25 \mathrm{~g}, 76 \%)$ was obtained as a yellowish oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.20-7.17(1 \mathrm{H}, \mathrm{m}), 7.15-7.10(2 \mathrm{H}$, $\mathrm{m}), 4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.16(4 \mathrm{H}, \mathrm{q}, J 7.3), 3.50-3.48(2 \mathrm{H}$ $\mathrm{m}), 2.83(2 \mathrm{H}, \mathrm{d}, J 10.8), 2.76-2.73(2 \mathrm{H}, \mathrm{m}), 2.46(3 \mathrm{H}, \mathrm{s}), 1.33$ $(6 \mathrm{H}, \mathrm{t}, J 7.0)$) $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 141.4,139.9,136.9,129.4$ (2), 126.7, 62.0 (d, $J 6.3$), 60.6 (d, J 8.5), 58.5 (d, $J 8.4$), 47.0 (d, J 167.4), 29.6, 21.8, 16.4 (d, J 5.3). HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{SP}(\mathrm{M}+1): 330.1293$. Found: 330.1263 .

3-[2,3-Dihydro-1,4-benzothiazepin-4-yl]-1-phenylpropan-1-one 8

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.43 \mathrm{~g}, 3 \mathrm{mmol})$ was added dropwise to a stirred solution of the compound $5 \mathrm{a}(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The yellow mixture was stirred for 10 min before the addition of 1-phenyl-1-(trimethylsilyloxy)ethylene $(0.29 \mathrm{~g}, 1.5 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and overnight at $25^{\circ} \mathrm{C}$. The reaction was quenched with water, and washed with 2 M NaOH and water. The organic layer was dried over MgSO_{4}. After removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in vacuo, the residue was purified by column chromatography (eluent: EtOAc : hexanes = $1: 8-1: 5)$ to give the product $8(0.13 \mathrm{~g}, 44 \%)$ as a yellowish oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.96(2 \mathrm{H}, \mathrm{d}, J 7.3), 7.57-7.53(2 \mathrm{H}$, m), 7.47 ($2 \mathrm{H}, \mathrm{dd}, J 7.8,7.3$), $7.27-7.25(1 \mathrm{H}, \mathrm{m}), 7.23-7.14$ (2 H $\mathrm{m}), 4.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.38-3.35(2 \mathrm{H}, \mathrm{m}), 3.18(2 \mathrm{H}, \mathrm{t}$, $J 7.1), 2.86(2 \mathrm{H}, \mathrm{t}, J 7.1), 2.81-2.76(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 199.1, 142.9, 136.9, 136.8, 133.1, 132.4, 130.6, 128.6,
128.0, 127.5, 127.4, 59.5, 58.2, 47.0, 37.0, 30.1. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NOS}(\mathrm{M}+1):$ 298.1266. Found: 298.1264 .

4-Methyl-2,3,4,5-tetrahydro-1,4-benzothiazepine-borane complex 9

A mixture of $5 \mathrm{a}(0.60 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.15 \mathrm{~g}, 4 \mathrm{mmol})$ was stirred at $25^{\circ} \mathrm{C}$ for 12 h in dry THF (20 mL). After evaporation of the solvent in vacuo, the residue was dissolved in EtOAc. The organic phase was washed with 1 M NaOH , brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the EtOAc in vacuo, the residue was purified by column chromatography (eluent: EtOAc : hexanes : $\left.\mathrm{Et}_{3} \mathrm{~N}=1: 9: 0.05\right)$ to afford $9(0.13 \mathrm{~g}$, 67%); mp 111-112 ${ }^{\circ} \mathrm{C}$ (colorless prisms from EtOAc-hexanes) (Found: C, 62.23; H, 8.68; N, 7.26. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NSB}$ requires C, $62.19 ; \mathrm{H}, 8.35 ; \mathrm{N}, 7.25 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.52-$ $7.48(1 \mathrm{H}, \mathrm{m}), 7.27-7.26(3 \mathrm{H}, \mathrm{m}), 4.56(1 \mathrm{H}, \mathrm{d}, J 13.8), 4.16(1 \mathrm{H}$, d, $J 13.8$), 3.42 ($1 \mathrm{H}, \mathrm{dd}, J 11.7,11.4$), $3.24-3.18(1 \mathrm{H}, \mathrm{m}), 3.14-$ $3.09(1 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{dd}, J 13.2,10.3), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, 2.40-1.21 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{B} H_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.5,136.1$ (br), 133.2, 132.7, 129.7, 128.3, 66.0, 63.7 (br), 48.0 (br), 28.4.

N, N-Bis(1 H -1,2,3-benzotriazol-1-ylmethyl)-2-phenoxyethan-1amine 11

Following the same procedure as for $\mathbf{4 a}$ using 2 -phenoxyethylamine $\mathbf{1 0}$ instead of $\mathbf{1}$, the title compound ($3.11 \mathrm{~g}, 78 \%$) was obtained as a white solid; mp $94-95^{\circ} \mathrm{C}$ (colorless prisms from MeOH) (Found: C, 66.27; H, 5.29; N, 24.77. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}$ requires C, $66.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 24.54 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.09$ ($2 \mathrm{H}, \mathrm{d}, J 8.2$), 7.73 ($2 \mathrm{H}, \mathrm{d}, J 8.2$), 7.48 ($2 \mathrm{H}, \mathrm{t}, J 7.1$), $7.40(2 \mathrm{H}, \mathrm{d}, J 7.5), 7.27(2 \mathrm{H}, \mathrm{t}, J 8.2), 6.97(1 \mathrm{H}, \mathrm{t}, J 7.3), 6.82$ ($2 \mathrm{H}, \mathrm{d}, J 7.9$), $5.77\left(4 \mathrm{H}, \mathrm{s}, 2 \mathrm{BtCH}_{2} \mathrm{~N}\right), 4.10(2 \mathrm{H}, \mathrm{t}, J 4.8), 3.83$ ($2 \mathrm{H}, \mathrm{t}, J 4.8$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 158.0, 146.1, 133.2, 129.6, 127.9, 124.2, 121.3, 119.9, 114.3, 110.1, 66.9, 64.8, 49.7.

4-Benzotriazolylmethyl-2,3,4,5-tetrahydro-1,4-benzoxazepine 12

Following the same procedure as $\mathbf{5 a}$ using $\mathbf{1 1}$ instead of $\mathbf{4 a}$, compound $\mathbf{1 2}$ was obtained as a mixture of Bt^{1} and Bt^{2} isomers in a $5.6: 1$ ratio ($1.48 \mathrm{~g}, 66 \%$); $\mathrm{mp} 67-69^{\circ} \mathrm{C}$ (colorless prisms from EtOAc-hexanes) (Found: C, 68.52; H, 5.80; N, 20.20. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$ requires C, $68.55 ; \mathrm{H}, 5.75 ; \mathrm{N}, 19.99 \%$); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 8.07(1 \mathrm{H}, \mathrm{d}, J 7.9), 7.65(1 \mathrm{H}, \mathrm{d}, J 7.9)$, $7.50(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.39(1 \mathrm{H}, \mathrm{t}, J 7.6), 7.18$ ($2 \mathrm{H}, \mathrm{dd}, J 7.6,7.3$), 7.09 ($2 \mathrm{H}, \mathrm{dd}, J 7.3,6.4$), $5.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{BtCH}_{2} \mathrm{~N}\right), 4.10(2 \mathrm{H}, \mathrm{t}$, $J 4.1), 3.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.20-3.18(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 159.6, 145.9, 133.2, 130.6, 130.3, 128.9, 127.5, 124.0, $123.5,120.8,119.9,110.1,70.8,68.1,56.7,55.9$.

4-(4-Methoxybenzyl)-2,3,4,5-tetrahydro-1,4-benzoxazepine 13a

Following a similar procedure as $\mathbf{6 a}$ using $\mathbf{1 2}$ instead of $\mathbf{5 a}$ as starting material, compound $13 \mathrm{a}(0.20 \mathrm{~g}, 74 \%)$ was purified by recrystallization; $\mathrm{mp} 80-82{ }^{\circ} \mathrm{C}$ (colorless needles from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $75.63 ; \mathrm{H}, 7.39 ; \mathrm{N}, 5.16 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C , $75.81 ; \mathrm{H}, 7.11 ; \mathrm{N}, 5.20 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.24-$ $7.16(3 \mathrm{H}, \mathrm{m}), 7.03-6.98(3 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.5), 4.09-4.06$ $(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 3.58(2 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{CH}_{3} \mathrm{OPhCH}_{2} \mathrm{~N}\right), 3.09-3.06(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $160.0,158.7,131.9,130.8,130.6,130.1,128.5,123.3,120.7$, 113.6, 70.2, 58.1, 58.0, 57.9, 55.2.

4-(4-Chlorobenzyl)-2,3,4,5-tetrahydro-1,4-benzoxazepine 13b

Following the same procedure as 13a using 4-chlorophenylmagnesium bromide ($1.5 \mathrm{ml}, 1.0 \mathrm{M}$ in ether) as Grignard reagent, compound $\mathbf{1 3 b}(0.23 \mathrm{~g}, 84 \%)$ was obtained as a yellowish oil (Found: C, $70.19 ; \mathrm{H}, 6.21 ; \mathrm{N}, 5.45 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}$ requires C, $70.20 ; \mathrm{H}, 5.89 ; \mathrm{N}, 5.12 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $7.31-7.23(4 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{dd}, J 8.1,4.1), 7.03(1 \mathrm{H}, \mathrm{d}, J 7.9)$, $6.99(2 \mathrm{H}, \mathrm{d}, J 4.1), 4.07(2 \mathrm{H}, \mathrm{dd}, J 4.3,4.1), 3.78(2 \mathrm{H}, \mathrm{s}), 3.60$
$(2 \mathrm{H}, \mathrm{s}), 3.08(2 \mathrm{H}, \mathrm{dd}, J 4.3,4.0) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.0$, $137.2,132.8,131.6,130.6,130.2,128.6,128.5,123.4,120.8$, 70.1, 58.1, 58.0, 57.9.

Diethyl 2,3,4,5-tetrahydro-1,4-benzoxazepin-4-ylmethylphosphonate 14

Following a similar procedure as for $\mathbf{7 a}$ using $\mathbf{1 2}$ instead of $\mathbf{5 a}$ as starting material, compound $\mathbf{1 4}(0.21 \mathrm{~g}, 70 \%)$ was obtained as a yellowish sticky oil (Found: C, 55.77; H, 7.76; N, 4.83. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{P}$ requires $\left.\mathrm{C}, 56.18 ; \mathrm{H}, 7.41 ; \mathrm{N}, 4.68 \%\right) ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ 7.27-7.17 ($2 \mathrm{H}, \mathrm{m}$), 7.04-7.00 ($2 \mathrm{H}, \mathrm{m}$), $4.18(4 \mathrm{H}, \mathrm{q}, J 7.0), 4.04(2 \mathrm{H}, \mathrm{s}), 4.04(2 \mathrm{H}, \mathrm{t}, J 4.3), 3.29(2 \mathrm{H}, \mathrm{t}$, $J 4.3), 2.84(2 \mathrm{H}, \mathrm{d}, J 11.3), 1.33(6 \mathrm{H}, \mathrm{t}, J 7.0)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 159.9, 131.1, 131.0, 128.8, 123.5, 120.9, 69.2, 62.1 (d, $J 6.9$), 59.5 (d, $J 9.2$), 59.2 (d, $J 9.2$), 48.6 (d, $J 166.6$), 16.5 (d, J 5.7).

$N, N-\operatorname{Bis}(1 H-1,2,3-b e n z o t r i a z o l-1-y l m e t h y l)-N-\left[2-\left(N^{\prime}-\right.\right.$ methyl anilino)ethyl]amine 19

Following the same procedure as $\mathbf{4 a}$ using $\mathbf{1 8}$ instead of $\mathbf{1}$, the title compound ($3.80 \mathrm{~g}, 92 \%$) was purified by recrystallization; $\mathrm{mp} 132-133{ }^{\circ} \mathrm{C}$ (colorless prisms from EtOAC) (Found: C, 66.70; H, 6.05; N, 27.27. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{8}$ requires C, 66.97; H, 5.86; N, $27.16 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 8.09$ ($2 \mathrm{H}, \mathrm{d}, J 8.0$), $7.57-$ $7.38(6 \mathrm{H}, \mathrm{m}), 7.16(2 \mathrm{H}, \mathrm{t}, J 6.8), 6.70(1 \mathrm{H}, \mathrm{t}, J 6.8), 6.54(2 \mathrm{H}, \mathrm{d}$, $J 6.7), 5.66\left(4 \mathrm{H}, \mathrm{s}, 2 \mathrm{BtCH} \mathrm{H}_{2} \mathrm{~N}\right), 3.40-3.32(2 \mathrm{H}, \mathrm{m}), 3.16-3.08$ $(2 \mathrm{H}, \mathrm{m}), 2.74(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 148.5, 146.0, 133.0, 129.3, 127.9, 124.2, 120.0, 116.7, 112.2, 109.7, 65.0, 51.4, 47.7, 38.8 .

4-Benzotriazolylmethyl-1-methyl-2,3,4,5-tetrahydro-1 $\mathbf{H - 1 , 4 -}$ benzodiazepine 20

Following the same procedure as for $\mathbf{5 a}$ using 19 instead of $\mathbf{4 a}$, compound $20(2.02 \mathrm{~g}, 86 \%)$ was obtained as a mixture of Bt^{1} and Bt^{2} isomers in a $4.4: 1$ ratio; mp $130-131{ }^{\circ} \mathrm{C}$ (colorless crystals from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 69.48; H, 6.62; N, 23.65. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5}$ requires C, $69.60 ; \mathrm{H}, 6.53 ; \mathrm{N}, 23.87 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \mathrm{Bt}^{1}: 8.08(1 \mathrm{H}, \mathrm{d}, J 7.7), 7.67(1 \mathrm{H}, \mathrm{d}, J 7.8), 7.50$ ($1 \mathrm{H}, \mathrm{t}, J 7.3$), $7.38(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.24-7.15(2 \mathrm{H}, \mathrm{m}), 6.91(2 \mathrm{H}, \mathrm{d}$, $J 7.7), 5.50(2 \mathrm{H}, \mathrm{s}), 3.93(2 \mathrm{H}, \mathrm{s}), 3.03(4 \mathrm{H}, \mathrm{s}), 2.88(3 \mathrm{H}, \mathrm{s}) ; \mathrm{Bt}^{2}$: 7.96-7.85 ($2 \mathrm{H}, \mathrm{m}$), 7.43-7.33 ($2 \mathrm{H}, \mathrm{m}$), 7.24-7.15 (2H, m), 6.91 $(2 \mathrm{H}, \mathrm{d}, J 7.7), 5.67(2 \mathrm{H}, \mathrm{s}), 3.98(2 \mathrm{H}, \mathrm{s}), 3.03(4 \mathrm{H}, \mathrm{s}), 2.88(3 \mathrm{H}$, s); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{Bt}^{1}: 152.3,146.0,133.3,130.6,129.6$, $128.2,127.3,123.8,120.8,119.8,115.7,110.3,68.0,57.8,55.0$, 54.2, 42.7.

4-(4-Chlorobenzyl)-1-methyl-2,3,4,5-tetrahydro-1 \mathbf{H}-1,4-benzodiazepine 21a

Following a similar procedure as for 6a using 20 instead of $\mathbf{5 a}$ as starting material, and 4-chlorophenylmagnesium bromide $(1.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in ether) as Grignard reagent, compound 21a $(0.21 \mathrm{~g}, 72 \%)$ was obtained as a colorless oil (Found: C, 70.80 ; $\mathrm{H}, 6.77$; $\mathrm{N}, 9.87 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2}$ requires C, $71.19 ; \mathrm{H}, 6.68 ; \mathrm{N}$, $9.77 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.26(4 \mathrm{H}, \mathrm{s}), 7.26-7.18$ $(1 \mathrm{H}, \mathrm{m}), 6.96-6.82(3 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 2.98-2.90$ $(4 \mathrm{H}, \mathrm{m}), 2.88(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.5,137.5,132.5$, $130.8,130.3,130.2,128.3,127.9,120.6,115.5,58.8,57.7,56.3$, 54.1, 42.9 .

4-Allyl-1-methyl-2,3,4,5-tetrahydro-1 H -1,4-benzodiazepine (21b)

Following a similar procedure as for 21a using vinylmagnesium bromide ($1.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) as Grignard reagent, compound $21 \mathrm{~b}(0.14 \mathrm{~g}, 68 \%)$ was obtained as a colorless oil (Found: C, 76.87; H, 9.29; N, 14.03. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires C, 77.18; H, 8.97; $\mathrm{N}, 13.85 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.22-7.17(1 \mathrm{H}, \mathrm{m})$, $7.10(1 \mathrm{H}, \mathrm{d}, J 7.1), 6.88-6.83(2 \mathrm{H}, \mathrm{m}), 5.97-5.83(1 \mathrm{H}, \mathrm{m}), 5.20-$
$5.14(2 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 3.08(2 \mathrm{H}, \mathrm{d}, J 6.1), 2.98-2.89(4 \mathrm{H}$, m), $2.88(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.4,135.9,130.8,130.2$, $127.8,120.5,117.6,115.4,58.9,58.0,56.3,54.4,42.8$.

1-Methyl-4-phenylethyl-2,3,4,5-tetrahydro-1 H -1,4-benzodiazepine (21c)

Following a similar procedure as for 21a using benzylmagnesium chloride ($1.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in ether) as Grignard reagent, compound 21c ($0.20 \mathrm{~g}, 76 \%$) was obtained as a colorless oil (Found: $\mathrm{N}, 10.85 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}$ requires $\mathrm{N}, 10.52 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.25-7.14(7 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}, \mathrm{d}, J 7.0), 3.88(2 \mathrm{H}$, s), $3.00-2.96(4 \mathrm{H}, \mathrm{m}), 2.88(3 \mathrm{H}, \mathrm{s}), 2.96-2.82(2 \mathrm{H}, \mathrm{m}), 2.69-2.62$ $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.3,140.3,130.7,130.1,128.6$, 128.3, 127.9, 125.9, 120.6, 115.5, 59.0, 56.5, 56.0, 53.9, 42.9, 34.2. HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2}(\mathrm{M}+1)$: 267.1861 . Found: 267.1850.

Diethyl (1-methyl-2,3,4,5-tetrahydro-1 H -1,4-benzodiazepin-4ylmethyl)phosphonate 22

Following a similar procedure as for $\mathbf{7 a}$ using $\mathbf{2 0}$ instead of $\mathbf{5 a}$ as starting material, compound $22(0.22 \mathrm{~g}, 69 \%)$ was obtained as a colorless oil (Found: C, 57.64; H, 8.28; N, 9.26. $\mathrm{C}_{15} \mathrm{H}_{25^{-}}$ $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{P}$ requires C, $\left.57.68 ; \mathrm{H}, 8.07 ; \mathrm{N}, 8.97 \%\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.23-7.15(2 \mathrm{H}, \mathrm{m}), 6.90(2 \mathrm{H}, \mathrm{d}, J 7.7), 4.20-4.10$ $(4 \mathrm{H}, \mathrm{m}), 3.98(2 \mathrm{H}, \mathrm{s}), 3.14-3.11(2 \mathrm{H}, \mathrm{m}), 2.94-2.91(2 \mathrm{H}, \mathrm{m})$, $2.88(3 \mathrm{H}, \mathrm{s}), 2.78(2 \mathrm{H}, \mathrm{d}, J 11.0), 1.33(6 \mathrm{H}, \mathrm{t}, J 7.0) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 152.3,131.1,129.4,127.9,120.4,115.5,61.8$ (d, J 6.9), 60.2 (d, $J 9.2$), 57.3 (d, $J 8.6$), $52.9,48.1$ (d, $J 167.8$), 42.8, 16.3 (d, J 5.7).

1,4-Dimethyl-2,3,4,5-tetrahydro-1H-1,4-benzodiazepine 23

Following a similar procedure as for $\mathbf{9}$ using $\mathbf{2 0}$ instead of $\mathbf{5 a}$ as starting material, compound $23(0.26 \mathrm{~g}, 73 \%)$ was obtained as a colorless oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.31(1 \mathrm{H}, \mathrm{td}, J 7.8$, $1.1), 7.12(1 \mathrm{H}, \mathrm{d}, J 6.7), 6.91(2 \mathrm{H}, \mathrm{t}, J 7.3), 4.31,3.79(2 \mathrm{H}, \mathrm{AB}$, $J 13.6), 3.46(1 \mathrm{H}, \mathrm{dd}, J 13.7,5.9), 3.30-3.22(1 \mathrm{H}, \mathrm{m}), 3.07-2.99$ $(1 \mathrm{H}, \mathrm{m}), 2.91-2.85(1 \mathrm{H}, \mathrm{m}), 2.89(3 \mathrm{H}, \mathrm{s}), 2.48(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 151.1, 132.1, 129.9, 123.8, 120.6, 115.7, 64.6, 61.2, 50.9, 47.3, 41.5. HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2}: 176.1313$. Found: 176.1305.

References

1 (a) N. Neamati, J. A. Turpin, H. E. Winslow, J. L. Christensen, K. Williamson, A. Orr, W. G. Rice, Y. Pommier, A. Garofalo, A. Brizzi, G. Campiani, I. Fiorini and V. J. Nacci, J. Med. Chem., 1999, 42, 3334; (b) A. Garofalo, G. Balconi, M. Botta, F. Corelli, M. D'Incalci, G. Fabrizi, I. Fiorini, D. Lamba and V. Nacci, Eur. J. Med. Chem., 1993, 28, 213; (c) G. L. Grunewald, V. H. Dahanukar, P. Ching and K. R. Criscione, J. Med. Chem., 1996, 39, 3539; (d) A. C. F. Hoffmann-La Roche \& Co., Neth. Pat. 6500 817, 1964 (Chem. Abstr., 1966, 64, 5122); (e) H. Toshiyuki, I. Takuhiro and Y. Hisao, JP 7272 107, 1972 (Chem. Abstr., 1972, 77, 140187f).

2 (a) H. Toshiyuki, I. Takuhiro and Y. Hisao, Ger. Offen. 2014 223, 1970 (Chem. Abstr., 1970, 73, 120697h); (b) R. T. Standridge, USP 4 125 538, 1978 (Chem. Abstr., 1979, 90, 72246r).
3 (a) G. Steiner, A. Franke, E. Hädicke, D. Lenke, H.-J. Teschendorf, H.-P. Hofmann, H. Kreiskott and W. J. Worstmann, J. Med. Chem., 1986, 29, 1877; (b) I. A. O'Neil, C. L. Murray, R. C. Hunter, S. B. Kalindjian and T. C. Jenkins, Synlett., 1997, 75; (c) G. A. Kraus, USP 4545 935, 1985.
4 P. K. S. Siegl, A. I. Goldberg,M. R. Goldberg and P. I. Chang, USP 5817 658, 1998(Chem. Abstr., 1998, 129, 290151w).
5 C. Z. Ding, R. Batorsky, R. Bhide, H. J. Chao, Y. Cho, S. Chong, J. Gullo-Brown, P. Guo, S. H. Kim, F. Lee, K. Leftheris, A. Miller, T. Mitt, M. Patel, B. A. Penhallow, C. Ricca, W. C. Rose, R. Schmidt, W. A. Slusarchyk, G. Vite, N. Yan, V. Manne and J. T. Hunt, J. Med. Chem., 1999, 42, 5241.

6 (a) T. Kataoka, Y. Nakamura, H. Matsumoto, T. Iwama, H. Shimizu, O. Muraoka and G. Tanabe, Chem. Pharm. Bull., 1997, 45, 265; (b) J. Szabó, L. Fodor, Á. Katócs, G. Bernáth and P. Sohár, Chem. Ber., 1986, 119, 2904; (c) A. K. Bose, W. A. Hoffman III and
M. S. Manhas, J. Chem. Soc., Perkin 1, 1976, 2343; (d) E. R. Squibb and Sons, Inc., Br. Pat. 1181 571, 1970 (Chem. Abstr., 1970, 72, 100778q).
7 (a) L. H. Sternbach, H. Lehr, E. Reeder, T. Hayes and N. Steiger, J. Org. Chem., 1965, 30, 2812; (b) M. Sindler-Kulyk, D. Neckers and J. R. Blount, Tetrahedron, 1981, 37, 3377; (c) L. Fodor, J. Szabó, E. Szûcs, G. Bernáth, P. Sohár and J. Tamás, Tetrahedron, 1984, 40, 4089; (d) J. Szabó, G. Bernáth, Á. Katócs, L. Fodor and P. Sohár, Can. J. Chem., 1987, 65, 175.
8 (a) M. D. Nair and S. M. Kalbag, Indian J. Chem., 1969, 7, 862; (b) R. Boudet and D. Bourgoin-Legay, C. R. Hebd. Seances Acad. Sci., Ser. C, 1976, 282, 249; R. Boudet and D. Bourgoin-Legay, Chem. Abstr., 1976, 84, 150605z.
9 (a) G. N. Walker and R. T. Smith, J. Org. Chem., 1971, 36, 305; (b) M. E. Derieg and L. H. Sternbach, J. Heterocycl. Chem., 1966, 3, 237; (c) CIBA Ltd., Belg. Pat. 669 838, 1966 (Chem. Abstr., 1966, 65, 18604); (d) CIBA Ltd., Fr. Pat. 1463 402, 1966 (Chem. Abstr., 1968, 68, 49670m).

10 (a) G. N. Walker, A. R. Engle and R. J. Kempton, J. Org. Chem., 1972, 37, 3755; (b) G. A. Kraus and S. Yue, J. Org. Chem., 1983, 48, 2936; (c) J. L. Castro, H. B. Broughton, M. G. N. Russell, D. Rathbone, A. P. Watt, R. G. Ball, K. L. Chapman, S. Patel, A. J. Smith, G. R. Marshall and V. G. Matassa, J. Med. Chem., 1997, 40, 2491; (d) Y. Damayanthi, B. S. P. Reddy and J. W. Lown, J. Org. Chem., 1999, 64, 290; (e) W.-P. Hu, J.-J. Wang, F.-L. Lin, Y.-C. Lin, S.-R. Lin and M.-H. Hsu, J. Org. Chem., 2001, 66, 2881.

11 J. Lehmann and G. Kraft, Arch. Pharm., 1984, 317, 595.
12 A. R. Katritzky, Y.-J. Xu, H.-Y. He and S. Mehta, J. Org. Chem., 2001, 66, 5590.
13 (a) A. R. Katritzky, X. Lan, J. Z. Yang and O. V. Denisko, Chem. Rev., 1998, 98, 409; (b) A. R. Katritzky, G. Qiu, H.-Y. He and B. Yang, J. Org. Chem., 2000, 65, 3683; (c) A. R. Katritzky, S. Mehta and H.-Y. He, J. Org. Chem., 2001, 66, 148.
14 G. S. Poindexter, D. A. Owens, P. L. Dolan and E. Woo, J. Org. Chem., 1992, 57, 6257.

